Bgg Correspondence for Toric Complete Intersections

نویسندگان

  • VLADIMIR BARANOVSKY
  • V. BARANOVSKY
چکیده

We prove a BGG-type correspondence describing coherent sheaves on complete intersections in toric varieties, and a similar assertion for the stable categories of related complete intersection singularities. 2000 Math. Subj. Class. Primary: 18E30; Secondary: 14F05, 14M25, 14M10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality for Toric Landau-ginzburg Models

We introduce a duality construction for toric Landau-Ginzburg models, applicable to complete intersections in toric varieties via the sigma model / Landau-Ginzburg model correspondence. This construction is shown to reconstruct those of Batyrev-Borisov, Berglund-Hübsch, Givental, and HoriVafa. It can be done in more general situations, and provides partial resolutions when the above constructio...

متن کامل

Structures on Spheres Duke - Cgtp - 05 - 03 Iii : Complete Intersections

We extend our model for affine structures on toric Calabi-Yau hypersurfaces [HZ02] to the case of complete intersections.

متن کامل

Toric complete intersection codes

In this paper we construct evaluation codes on zero-dimensional complete intersections in toric varieties and give lower bounds for their minimum distance. This generalizes the results of Gold–Little–Schenck and Ballico–Fontanari who considered evaluation codes on complete intersections in the projective space.

متن کامل

Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein Toric Fano Varieties

We propose a combinatorical duality for lattice polyhedra which conjecturally gives rise to the pairs of mirror symmetric families of Calabi-Yau complete intersections in toric Fano varieties with Gorenstein singularities. Our construction is a generalization of the polar duality proposed by Batyrev for the case of hypersurfaces.

متن کامل

Closed Form Expressions for Hodge Numbers of Complete Intersection Calabi-Yau Threefolds in Toric Varieties

We use Batyrev-Borisov’s formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007